
Modern Assembly Language Programming
with the

ARM processor
Chapter 5: Structured Programming

1 Introduction

2 Structured Programming

3 Selection

4 Iteration

5 Calling Functions

6 Writing Subroutines

7 Aggregate Data Types

Why Use Structured Programming?

Structured code is:

easier to write,

easier to understand,

easier to debug, and

easier to maintain.

Good high-level languages enforce strucured programming.

Good assembly programmers enforce strucured programming.

Blocks

A “block” of code

contains one or more statements (instructions),

has one entry point and one exit point,

may contain other blocks.

Flow control structures are used to control which blocks are executed.

Flow Control

All programs can be written using only:

Sequencing Execute instructions (statement) sequentially. Blocks which contain
only basic instructions (statements) which are executed sequentially,
are called “basic blocks”.

Selection Execute a block of instructions, a, or a block of instructions, b, but not
both. A selection structure also forms a block, but not a basic block.

Iteration Execute the same block of instructions, a, zero or more times. An
iteration structure also forms a block, but not a basic block.

Blocks can be executed sequentially, selectively, or iteratively.
All programming is done with blocks. High level languages enforce the use of blocks.
Assembly does not!

If-Then-Else

The following two slides show two ways to implement the following C code:

1 static int a = 10;
2 static int b = 4;
3 static int x;
4

5 int main()
6 {
7 if (a < b)
8 x = 1;
9 else

10 x = 0;
11 .
12 .
13 .

If-Then-Else with Conditional Execution

1 .data
2 a: .word 10 @ static int a=10;
3 b: .word 4 @ static int b=4;
4 x: .word 0 @ static int x;
5 .text
6 .globl main
7 main: ldr r0, =a @ load pointer to ’a’
8 ldr r1, =b @ load pointer to ’b’
9 ldr r0, [r0] @ load ’a’

10 ldr r1, [r1] @ load ’b’
11 cmp r0, r1 @ compare them
12 movlt r0, #1 @ THEN section - load 1 into r0
13 movge r0, #0 @ ELSE section - load 0 into r0
14 ldr r1, =x @ load pointer to ’x’
15 str r0, [r1] @ store r0 in ’x’

If-Then-Else with Branch Instructions

1 .data
2 a: .word 10 @ static int a=10;
3 b: .word 4 @ static int b=4;
4 x: .word 0 @ static int x;
5 .text
6 .globl main
7 main: ldr r0, =a @ load address of ’a’
8 ldr r1, =b @ load address of ’b’
9 ldr r0, [r0] @ load ’a’

10 ldr r1, [r1] @ load ’b’
11 cmp r0, r1 @ compare them
12 bge else @ if a >= b then goto else_code
13 mov r0, #1 @ THEN section - load 1 into r0
14 b after @ skip the else section
15 else: mov r0, #0 @ ELSE section - load 0 into r0
16 after:ldr r1, =x @ load pointer to ’x’
17 str r0, [r1] @ store r0 in ’x’

For and While Loop in C

1 int main()
2 {
3 int i;
4 for(i=0;i<10;i++)
5 printf("Hello World - %d\n",i);
6 return 0;
7 }

Any for loop can be converted to a while loop.

1 int main()
2 {
3 int i;
4 i = 0;
5 while(i<10)
6 {
7 printf("Hello World - %d\n",i);
8 i++;
9 }

10 return 0;
11 }

For and While Loop in Assembly

1 .data
2 str: .asciz "Hello World - %d\n"
3

4 .text
5 .globl main
6 main: @ We are going to use r4 and make a function call, so
7 stmfd sp!,{r4,lr} @ push lr and r4 onto stack
8 mov r4, #0 @ use r4 for i; i=0
9 loop: cmp r4, #10 @ perform comparison

10 bge done @ end loop if i >= 10
11 ldr r0, =str @ load pointer to format string
12 mov r1, r4 @ copy i into r1
13 bl printf @ printf("Hello World - %d\n",i);
14 add r4, r4, #1 @ i++
15 b loop @ repeat loop test
16 done: mov r0, #0 @ move return code into r0
17 ldmfd sp!,{r4,lr} @ pop lr and r4 from stack
18 mov pc, lr @ return from main
19 .end

Do-While Loop in C
If we know for certain that the body of a for or while loop will execute at least once,
then we can convert it to a (more efficient) do-while

1 int main()
2 {
3 int i;
4 for(i=0;i<10;i++)
5 printf("Hello World - %d\n",i);
6 return 0;
7 }

1 int main()
2 {
3 int i = 0;
4 do {
5 printf("Hello World - %d\n",i);
6 i++;
7 } while(i<10)
8 return 0;
9 }

Do-While Loop in Assembly

1 .data
2 str: .asciz "Hello World - %d\n"
3 .text
4 .globl main
5 main:
6 @ We are going to use r4 and make a function call, so
7 stmfd sp!,{r4,lr} @ push lr and r4 onto stack
8 ldr r4, #0 @ use r4 for i; i=0
9 loop: ldr r0, =str @ load pointer to format string

10 mov r1, r4 @ copy i into r1
11 bl printf @ printf("Hello World - %d\n",i);
12 add r4, r4, #1 @ i++
13 cmp r4, #10 @ perform comparison
14 blt loop @ end loop if i >= 10
15 mov r0, #0 @ move return code into r0
16 ldmfd sp!,{r4,lr} @ pop lr and r4 from stack
17 mov pc, lr @ return from main
18 .end @ tell assembler that we are done

Calling Standard C Library Functions

1 .data
2 str1: .asciz "%d"
3 str2: .asciz "You entered %d\n"
4 n: .word 0
5 .text
6 .globl main
7 main: stmfd sp!,{lr} @ push link register onto stack
8 ldr r0, =str1 @ load address of format string
9 ldr r1, =n @ load address of int variable

10 bl scanf @ call scanf("%d",&n)
11 ldr r0, =str2 @ load address of format string
12 ldr r1, =n @ load address of int variable
13 ldr r1, [r1] @ load int variable
14 bl printf @ call printf("You entered %d\n",n)
15 mov r0, #0 @ load return value
16 ldmfd sp!,{lr} @ pop link register from stack
17 mov pc, lr @ return from main

ARM Function Calling Conventions

r0 (a1) 
Used to pass argument values into a subroutine and to return
a result value from a function. They may also be used to hold
intermediate values within a routine. Caller assumes they will
be modified.

r1 (a2)
r2 (a3)
r3 (a4)

r4 (v1) 

A subroutine must preserve (or save and restore) the contents
of these registers. If they are used, they must be pushed to the
stack at the beginning of the subroutine/function, and restored
before returning.

r5 (v2)
r6 (v3)
r7 (v4)
r8 (v5)
r9 (v6)
r10 (v7)

r11 (fp) (v8)

r12 (ip)
}

Intra-procedure scratch register. May be modified.

r13 (sp)
}

Program stack pointer.

r14 (lr)
}

Link Register (return address). See bl instruction.

r15 (pc)
}

Program Counter. Changing this causes a branch.

CPSR

Passing One Argument

Passing a pointer to a string.

1 printf("Hello World");

1 @ load first param (pointer to format string) in r0
2 ldr r0, =hellostr @ hellostr previously declared
3 @ call printf
4 bl printf

Passing Four Arguments

Some variables may be in memory, others may be already in registers.

They all have to be copied to the correct registers before the function is called.

1 printf("The results are: %d %d %d\n",i,j,k);

1 @ load first param (pointer to format string) in r0
2 ldr r0, =formatstr
3 ldr r1, =i @ load pointer to i in r1
4 ldr r1, [r1] @ load value of i in r1
5 mov r2, r6 @ value of j was in r6. copy to r2
6 ldr r3, =k @ load pointer to k in r3
7 ldr r3, [r3] @ load value of k in r3
8 @ call printf
9 bl printf

Passing More Than Four Arguments

1 printf("The results are: %d %d %d %d %d\n",i,j,k,l,m);

1 ldr r0,=m @ load pointer to last variable ’m’
2 ldr r0,[r0] @ load value of m
3 str r0,[sp,#-4]! @ push it on the stack
4 ldr r0,=l @ load pointer to variable ’l’
5 ldr r0,[r0] @ load value of l
6 str r0,[sp,#-4]! @ push it on the stack
7 @ load first param (pointer to format string) in r0
8 ldr r0, =resultstr
9 ldr r1, =i @ load pointer to i in r1

10 ldr r1, [r1] @ load value of i in r1
11 mov r2, r6 @ value of j was in r6. copy to r2
12 mov r3, r7 @ value of k was in r7. copy to r3
13 @ call printf
14 bl printf
15 add sp,sp,#8 @ pop 2 words from the stack

Rules for a Subroutine or Function

When writing a subroutine or function:

the first four parameters are in r0-r3,

any additional parameters can be accessed with ldr rd,[sp,#offset],

the calling function will remove parameters from the stack, if necessary,

if the function return type is not void, then the return value must be placed in
r0 (and possibly r1, r2, r3), and

the return address will be in lr.

A Simple Function

1 int myfun(int a, int b, int c, int d, int e, int f)
2 {
3 return a+b+c+d+e+f;
4 }

1 myfun: add r0,r0,r1 @ r0 = a + b
2 add r0,r0,r2 @ r0 = a + b + c
3 add r0,r0,r3 @ r0 = a + b + c + d
4 ldr r1,[sp,#0] @ load e from stack
5 add r0,r0,r1 @ r0 = a + b + c + d + e
6 ldr r1,[sp,#4] @ load f from stack
7 add r0,r0,r1 @ r0 = a + b + c + d + e + f
8 mov pc,lr @ return from function

Automatic Variables

Automatic (local) variables may be allocated on the stack.

1 int doit()
2 { int x[20];
3 register int i; /* try to keep i in a register */
4 for(i=0;i<20;i++) x[i] = i;
5 return i;
6 }

1 doit: sub sp,sp,#80 @ Allocate ’x’ on stack
2 mov r2,#0 @ use r2 as ’i’
3 loop: cmp r2,#20 @ pre-test loop
4 bge done @ quit if i >= 20
5 str r2,[sp,r2,asl#2] @ x[i] = i;
6 add r2,r2,#1 @ i++
7 b loop @ go back to loop test
8 done: mov r0,r2 @ return i
9 add sp,sp,#80 @ destroy automatic variable

10 mov pc,lr @ return from function

Recursion in C

1 void reverse(char *a,int left, int right)
2 { char tmp;
3 if(left<right)
4 {
5 tmp=a[left];
6 a[left]=a[right];
7 a[right]=tmp;
8 reverse(a,left+1,right-1);
9 }

10 }
11 int main()
12 { char *str="This is the string to reverse";
13 printf(str);
14 reverse(str,0,strlen(str)-1);
15 printf(str);
16 return 0;
17 }

Recursion in Assembly

1 reverse:stmfd sp!,{lr} @ I may call myself:save lr
2 sub sp,sp,#4 @ Allocate tmp on stack
3 cmp r1,r2 @ if(left>=right)
4 bge exit @ then return
5 ldrb r3,[r0,r1] @ load character at a[left]
6 strb r3,[sp,#0] @ store in tmp
7 ldrb r3,[r0,r2] @ load character at a[right]
8 strb r3,[r0,r1] @ store in a[left]
9 ldrb r3,[sp,#0] @ load tmp

10 strb r3,[r0,r2] @ store in a[right]
11 add r1,r1,#1 @ calculate left+1
12 sub r2,r2,#1 @ calculate right-1
13 bl reverse @ make recursive call
14 exit: ldr lr,[sp,#4] @ get lr from 4 bytes above sp
15 add sp,sp,#8 @ restore sp to original value
16 mov pc,lr @ return from function

Much Better Recursion in Assembly

1 reverse:cmp r1,r2 @ if(left>=right)
2 bge exit @ then return
3 stmfd sp!,{lr} @ I WILL call myself-save lr
4 ldrb r3,[r0,r1] @ load character at a[left]
5 ldrb ip,[r0,r2] @ load character at a[right]
6 strb r3,[r0,r2] @ store in a[right]
7 strb ip,[r0,r1] @ store in a[left]
8 add r1,r1,#1 @ calculate left+1
9 sub r2,r2,#1 @ calculate right-1

10 bl reverse @ make recursive call
11 ldmfd sp!,{lr} @ pop lr from the stack
12 exit: mov pc,lr @ return from function

Using Pointers in C

1 void reverse(char *left, char *right)
2 {
3 char tmp;
4 if(left<=right)
5 {
6 tmp=*left;
7 *left=*right;
8 *right=tmp;
9 reverse(left+1,right-1);

10 }
11 }
12 int main()
13 { char *str="This is the string to reverse";
14 printf(str);
15 reverse(str,str+strlen(str)-1);
16 printf(str);
17 return 0;
18 }

Using Pointers in Assembly

1 reverse:cmp r0,r1 @ if(left>=right)
2 bge exit @ then return
3 stmfd sp!,{lr} @ I WILL call myself-save lr
4 ldrb r3,[r0] @ load character at *left
5 ldrb ip,[r1] @ load character at *right
6 strb ip,[r0] @ store in *left
7 strb r3,[r1] @ store in *right
8 add r0,r0,#1 @ calculate left+1
9 sub r1,r1,#1 @ calculate right-1

10 bl reverse @ make recursive call
11 ldmfd sp!,{lr} @ pop lr from the stack
12 exit: mov pc,lr @ return from function

Arrays

1
...

2 int x[100];
3 int i;
4

5 for(i=0;i<100;i++)
6 x[i] = 0;
7

...

1
...

2 sub sp, sp, #400 @ allocate 400 bytes in stack
3 mov r0, #0 @ use r0 to hold the index
4 mov r1, #0 @ value to initialize with
5 loop: str r1, [sp,r0,lsl #2] @ set array element to zero
6 cmp r0, #100 @ loop test
7 add r0, r0, #1 @ increment index
8 blt loop @ loop while index < 100
9

...

Using a C struct

1 struct student {
2 char first_name[30];
3 char last_name[30];
4 unsigned char class;
5 int grade;
6 };
7

...
8 struct student newstudent; /* allocate on the stack */
9 strcpy(newstudent.first_name,"Sam");

10 strcpy(newstudent.last_name,"Smith");
11 newstudent.class = 2;
12 newstudent.grade = 88;
13

...

Equivalent in Assembly

1 .data
2 .equ s_first_name, 0
3 .equ s_last_name, 30
4 .equ s_class, 60
5 .equ s_grade, 64
6 .equ s_size, 68
7 sam: .asciz "Sam"
8 smith: .asciz "Smith"

Equivalent in Assembly (continued)

1
...

2 sub sp, sp,#s_size @ allocate struct on the stack
3 mov r0, sp @ put pointer to struct in r0
4 add r0, r0, #s_first_name@ offset to first name field
5 ldr r1, =sam @ load pointer to "Sam"
6 bl strcpy @ copy the string
7 mov r0, sp @ put pointer to struct in r0
8 add r0, r0, #s_last_name @ offset to last name field
9 ldr r1, =smith @ load pointer to "Smith"

10 bl strcpy @ copy the string
11 mov r0, sp @ put pointer to struct in r0
12 mov r1, #2 @ load constant value of 2
13 strb r1, [r0, #s_class] @ store with offset
14 mov r1, #88 @ load constant value of 88
15 str r1, [r0, #s_grade] @ store with offset
16

...

	Introduction
	Structured Programming
	Selection
	Iteration
	Calling Functions
	Writing Subroutines
	Aggregate Data Types

